
Robust Construction of 3-D Conforming
Delaunay Meshes Using Arbitrary-Precision
Arithmetic

Konstantin Bogomolov

Institute of Mathematical Modeling, Moscow kbogomolov@mail.ru

An algorithm for the construction of 3-D conforming Delaunay tetrahe-
dralizations is presented. The boundary of the meshed domain is contained
within Voronoï cells of the boundary vertices of the resulting mesh. The
algorithm is explained heuristically. It has been implemented. The problem
of numerical precision is shown to be a major obstacle to robust imple-
mentation of the algorithm. The Automatic Arbitrary-Precision Arithmetic
Library is introduced to solve this problem. The resulting program is in-
tended to be applicable to any mathematically correct input. It has per-
formed successfully on a number of test cases, including a known difficult
case for tetrahedral meshing. It is available on the Internet. The Arithmetic
Library may be useful for resolving numerical precision problems in any
application, and as a base for experimenting with new meshing strategies.

Fig. 1. Bullito model Fig. 2. Delaunay mesh of Bullito

1 Introduction

The Delaunay tetrahedralization and its dual, the Voronoï diagram, are at-
tractive approaches to three-dimensional mesh generation due to several

184 Konstantin Bogomolov

useful properties of these objects. The Voronoï diagram, in particular,
seems well suited for application to 3-D numerical simulation problems
because it divides the space into domains naturally “belonging” to each of
the points of the input set.
The difficulty of Delaunay / Voronoï methods lies in obtaining a mesh that
fits into the specified boundary. The basic Delaunay tetrahedralization
covers the convex hull of the set of input points. If the domain to be
meshed is not convex, there is no guarantee that all of its faces and edges
will appear in the tetrahedralization.
An overview of the known approaches to this problem is contained in the
paper by Jonathan Richard Shewchuk [1]. These include the conforming
Delaunay, the “almost Delaunay” and the constrained Delaunay ap-
proaches. The conforming Delaunay approach is justifiably criticized for
adding more points than the other approaches and for its difficulty in con-
trolling the quality of the mesh. However, of the three approaches, only
this one generates a truly Delaunay mesh.
The conforming Delaunay tetrahedralization is a normal Delaunay tetrahe-
dralization of the set of input points, together with some additional points
that are introduced, typically, onto the domain boundary. It must contain
all of the domain’s edges and faces as unions of its own edges and faces.
The task of a conforming Delaunay tetrahedralization algorithm is to de-
termine the positions of additional points needed to recover the given do-
main boundary.

Fig. 3. Voronoï cells of Bullito Fig. 4. Voronoï cells at the boundary

It seems that the Delaunay property would be important for the user of a
Delaunay algorithm, and not merely due to the quality of the Delaunay tet-
rahedra (especially considering that quality Delaunay meshing can be ac-
tually difficult)! The other good property of Delaunay meshes is their dual-
ity to the Voronoï diagrams. Perhaps the user of a Delaunay meshing
program will be more interested in the Voronoï cells than in the tetrahedral
mesh, - and in that case, the conforming Delaunay approach should be the

Robust Construction of 3-D Conforming Delaunay Meshes 185

most straightforward one, as it immediately provides the covering of the
domain with the Voronoï cells in the usual metric.

Fig. 5. A domain with sharp angles Fig. 6. Delaunay mesh

Fig. 7. Voronoï cells Fig. 8. Voronoï cells on the boundary
My algorithm and program strive to achieve a stricter conformation. I want
the Voronoï cells of the points belonging to the domain boundary to con-
tain within them this entire boundary. They will constitute the outer layer
of the domain’s Voronoï decomposition, and it will be possible to trim
them with the boundary, thus achieving a boundary-fitting Voronoï mesh
(figures 3, 4). The cells of the interior points will all be contained strictly
inside the domain, without any of them touching the boundary or sticking
outside. The internal two-sided boundaries (which can also be present in
the domain) will also be fully covered by their Voronoï cells. This con-
struction (also known as the empty smallest circumsphere property for the
boundary triangles) is a known way to make Delaunay meshing simpler, at
the price of adding more points. However, it may perhaps be also useful to
the potential user of the Voronoï mesh: for example, it could simplify the
specification of boundary conditions (or of the special processing near the
boundary) in 3-D numerical simulation problems. Besides, it helps to make
the pictures look nice!

186 Konstantin Bogomolov

Despite the conceptual simplicity of the conforming Delaunay tetrahe-
dralizations, it seems that the first proof of their existence for arbitrary
domains was published only in 2000, by Michael Murphy, David M.
Mount and Carl W. Gable [2]. Algorithms for constructing them have also
been published by Cohen-Steiner, de Verdière and Yvinec [3], Cheng and
Poon [4], Pav and Walkington [5], and Cheng, Dey, Ramos and Ray [6].
These papers all present proofs of the algorithms’ correctness. Cohen-
Steiner, de Verdière and Yvinec also report an implementation of their al-
gorithm that requires knowledge of the domain’s local feature size.
In this article, a simple but unproven conforming Delaunay algorithm that
does not require additional information about the input domain is pre-
sented. It has been successfully implemented. I tried to develop a black-
box code that works correctly with arbitrary, mathematically correct input.
The solution to numerical precision problems I have implemented may be
of interest by itself. The code, including the Library, is available for
download at http://kbogomolov.informatics.ru.
I would like to thank Professor Vladimir Tishkin for many useful discus-
sions, and the reviewers of this article, whose comments were extremely
helpful for improving this publication.
The work was supported by ISTC grant 1820. The Bullito model is cour-
tesy of Primal Software, Moscow.

2 The Problem

The input for the algorithm is a Piecewise-Linear Complex (defined, for
example, in the article [3]). There is an additional requirement that some of
the faces of the PLC are marked as “boundary”: these faces should divide
the space into the interior (“the domain”) and the exterior. All other faces
should belong to the interior; they play the role of 2-sided internal bounda-
ries. If we need to mesh an arbitrary PLC, it is possible convert it to the re-
quired form by enclosing it inside a polyhedron and marking all of the
polyhedron’s faces as boundary. This discrimination between the interior
and the boundary faces is useful, in practice, for avoiding the unnecessary
refinement caused by the interactions of the tetrahedra outside the domain.
All of the points added into the Delaunay tetrahedralization (the vertices of
the domain, the interior points and the points added during the conforma-
tion process) will be called throughout this paper “points” or “vertices”.
The vertices of the original input domain will also sometimes be called
“corners”. The PLC will sometimes be called “domain” or “boundary”.

Robust Construction of 3-D Conforming Delaunay Meshes 187

It is additionally required of the algorithm that the faces of the PLC must
be fully contained inside the Voronoï cells of their points. To illustrate this
requirement, a conformed Delaunay triangle on a boundary face may be
considered. Its presence does mean that the cells of its three vertices share
a common Voronoï edge somewhere along the line that is orthogonal to
the face and passes through the triangle’s circumcenter. It does not guaran-
tee, however, that this common edge intersects the boundary; thus, some
part of the boundary may be outside the outer layer of cells, and some inte-
rior cells may be sticking outside the domain. So, in order for this condi-
tion to be fulfilled, it is required that all of the tetrahedra adjacent to the
boundary have their circumcenters on the same side of the boundary as
themselves. In 2-D, this requirement would translate into triangles near
border having acute angles opposite the border. In 3-D, I will sometimes
call such tets sufficiently acute. Since the tetrahedra outside the domain are
removed once the mesh is constructed, they are not required to be suffi-
ciently acute. Boundary Voronoï cells are trimmed by the boundary for
output, without requiring access to the deleted exterior tets.
So, the entire problem the algorithm and program must solve is this: build
a conforming Delaunay tetrahedralization of the given PLC such that all of
the interior tetrahedra adjacent to the input faces have their circumcenters
on the same side of the face as themselves.

3 The Algorithm

3.1 Delaunay Tetrahedralization

The first step in solving the stated problem is to construct an unconstrained
Delaunay tetrahedralization of the set of input points. I use the simple in-
cremental point addition (Bowyer-Watson) algorithm, described, for ex-
ample, in the book [7]. The search for the first hit tetrahedron is performed
using a spatial binary tree, with each node subdividing the parent’s region
in half, and the axis of subdivision changing with each new level.
The most important numerical operation in this algorithm is the check
whether the added point is inside a tet’s circumsphere. For the program to
be robust, it is essential for this check to always give the correct result. The
computations performed are as follows:
Let p be the added point and let the tet’s vertices be 0, b, c, d (we translate
the origin into the first vertex). The vertices should be ordered so that
b · c d > 0. Then, the point shall be strictly inside the tet’s circumsphere
if and only if

188 Konstantin Bogomolov

.0

||
||
||
||

2

2

2

2

zyx

zyx

zyx

zyx

pppp
dddd
cccc
bbbb (1)

So, in order to implement this check robustly, we must be able to deter-
mine the sign of an expression that depends on the coordinates of the input
vertices and contains the operations of addition, subtraction and multipli-
cation. A method for doing this is described in Section 4.

3.2 Conforming Tetrahedralization

Once the unconstrained Delaunay mesh is constructed, we must add points
on the boundary in order to recover it and to make the adjacent tets in the
interior sufficiently acute.
The following ideas provide the base from which the algorithm for this op-
eration has been constructed. However, I do not have a formal proof of the
algorithm’s termination. The algorithm is listed in the pseudocode below.
The condition of the boundary Voronoï cells containing entire boundary
means that the vertices owning these cells must be packed closely enough
on the boundary, so that the cells of other vertices could not “pierce” their
layer. In the terms of Delaunay mesh, for any triangle on the boundary to
be present in the tetrahedralization, it is sufficient that its smallest circum-
scribed sphere does not contain any vertex inside it. This condition (empty
smallest circumsphere) is also a necessary and sufficient one for the adja-
cent tets to be sufficiently acute. Therefore, if we add points on a boundary
face so densely that its 2-D Delaunay triangles have empty smallest cir-
cumspheres, we will achieve the desired conforming tetrahedralization.
But the radius of the smallest circumsphere is the circumradius of the De-
launay triangle; therefore, we can use a 2-D Delaunay refinement algo-
rithm, such as Ruppert’s [8], to minimize it!
Of course, the difficulty lies in refining the faces so that the refinement of
one face does not interfere with the refinement of others. If all faces were
disjoint, there would be no problem here: we would simply refine the tri-
angulation on each face until the circumcircles of all triangles were small
enough, e.g. smaller than the minimal distance between the faces. How-
ever, input faces usually have common edges and vertices, and interfer-
ence between them may happen, especially between the faces at an acute
dihedral angle to each other.

Robust Construction of 3-D Conforming Delaunay Meshes 189

In 2-D, there is a similar problem. If we recover domain boundary, for ex-
ample, by splitting each non-recovered segment at its midpoint, we may
get infinite looping near domain corners with sharp angles. A solution is to
split the segments adjacent to corners by putting points at some fixed dis-
tances from the corner – e.g. powers of 2. This way, points on the edges
near corners will arrange themselves into “wheels” of some radius, and
there will be no interference between edges near each corner even if they
are at a sharp angle to each other. This notion of powers of two distances
appears in a number of places: Ruppert's concentric shell splitting [8],
Shewchuk’s work [9], Pav’s thesis [10], etc.
The solution in 3-D, it seems, could be similar; however, we need to con-
struct such protecting structures both at the corners and the edges of the
boundary, since the adjacent faces may meet at both.
For each corner, we can simply put points at a fixed distance from it on all
incident edges and faces. It is possible to show that if these points are
added on the faces densely enough, fans of triangles will appear near each
corner with each triangle having empty smallest circumsphere, and, there-
fore, sufficiently acute adjacent tets. In order to avoid interference between
faces through a common edge, the first and the last face point of each fan
is situated so that it makes a fixed angle with the edge, for example, one
the sine of which is a power of 2.
It remains to protect the common edges of the faces, away from the cor-
ners. Suppose we have already recovered one face, and are now processing
a face that is adjacent to it via a small dihedral angle. Then let us copy
some of the points from the already recovered face on the current face by
rotating them around the common edge. If we do that at least with the first
layer of points neighboring the edge, we will get identical triangulations on
both faces near this common edge, and will, therefore, avoid interference
and achieve conformation.
This description is, of course, incomplete, because I did not specify exactly
which points are transferred between the faces and under which conditions.
The precise formulation is contained in the algorithm listed below, but I
am not sure it is a correct one, i.e. that it guarantees the algorithm to al-
ways terminate. That is the obstacle to proving the algorithm.
However, it seems that a provably correct algorithm can be constructed
from the same basic ideas: 1) each face can be refined independently of all
others until the circumcircles of its 2-D Delaunay triangles are small
enough (while obeying the radii of the corners by refining the arcs around
them); 2) interference between the faces through the common edges can be
neutralized by transferring the points between faces through rotations

190 Konstantin Bogomolov

around edges. Note that when we add points to a face after transferring, the
circumradii of the face’s triangles do not increase.
Here is the algorithm I have implemented. Bold letters indicate a definition
of a “routine”, italics indicate a call to a routine. The entry point is recov-
ery of the domain. The unconstrained mesh is supposed to be constructed
at this point.
Recovery of the domain:

compute radii of the corners;
recover edges;
recover faces.

Computation of the corner radii:
for each corner of the domain:

find its nearest neighbor point in the tetrahedralization;
determine d = distance to it;
determine the radius R = 2q such that 0.2d 2q 0.4d (q is
an integer)

Recovery of the edges:
while any of the segments into which the domain edges are already
subdivided requires subdivision:

add a point on such segment;
recalculate corner radii after adding a new point.

Check whether a segment of an edge requires subdivision:
if it is absent from the tetrahedralization, then

requires.
Otherwise:

for each of the PLC faces incident to the edge:
find the triangle of the 2-D Delaunay triangulation
on this face that is incident to the segment;
if its angle opposite the segment is not acute, then
the subdivision is required.

Otherwise (if the segment is present and all adjacent 2-D Delaunay
triangles have acute angles), the subdivision is not required.

Addition of a point on a segment:
if both ends of the segment are domain corners, or if both aren’t:

put a point approximately in the middle;
otherwise (if only one end is a corner):

if the segment’s length is larger than 3 radii of the corner,
put a point approximately in the middle;

otherwise
put a point at the radius distance from the corner.

(See Section 4.3 for details on adding a point approximately in the
middle.)

Robust Construction of 3-D Conforming Delaunay Meshes 191

Recalculation of corner radii after adding a new point:
for each of the neighbors of the newly added point:

if the neighbor is a corner of the PLC:
check if its distance to the new point is less than
or equal to its radius;
if it is, reduce the radius by halving it repeatedly
until it becomes strictly less than the distance to
the added point.

Recovery of the faces:
repeat for all faces of the PLC until all are fully recovered:

Let F be the current face that needs recovery.
Repeat while F is not recovered:

recover all edges of the face;
recover triangles of the face (adding one point);

mark F as “once recovered”
Recovery of the face’s edges:

while any of the segments into which the face’s edges are already
subdivided requires subdivision:

add a point on such segment;
recalculate corner radii after adding a new point.

(Note that this is similar to the Recovery of the edges function, but works
only for one face.)
Recovery of triangles of the face (adding one point):

Find one of the following on the PLC face F:
a triangle that is present in the 2-D Delaunay triangulation
of F but not in the current tetrahedralization,

or
a triangle on F that is present in the tetrahedralization but
has adjacent tets the circumcenters of which are on a
wrong side of F (check two tets for interior faces and one
tet for boundary ones).

Add point on the found triangle.
Addition of point on triangle:

temporarily (so that it can be removed later) add a point into the
tetrahedralization at the circumcenter of the triangle. Let this point
be P.
For each point Q to which P becomes a neighbor:

if Q is a corner of the current face,
if P is closer to Q than the radius of Q,

cancel the addition of P;
add point P’ on the arc around corner Q;

192 Konstantin Bogomolov

recalculate corner radii after adding a
new point
return from function.

else, if Q belongs to an edge of the current face:
gather candidates for transferring by point Q.

Look among all candidates for transferring for the suitable one. If
found, transfer and add it instead of P, otherwise confirm the addi-
tion of P.
Recalculate corner radii after adding a new point.

Addition of point on the arc around domain corner:
Let P be the point we were trying to add on the face F that has vio-
lated the radius of the F’s corner Q.
Find the sector between the neighbors of Q belonging to F which
was hit by P. Add P’ on the arc of Q’s radius in this sector. If this
sector is an extreme one near F’s border, put the point at a fixed
angle from the border (the sine of which is a power of 2); if the
sector is strictly inside the face, add P’ approximately in the mid-
dle of it (see Section 4.3 about adding point approximately in the
middle).

Gathering candidates for transferring:
Let Q be a point lying on the domain edge E that is incident to the
face F.
For each neighbor vertex N of Q:

if it belongs to a PLC face G F:
if G is incident to F via the edge E:

if G is marked as “once recovered”:
select N as a candidate.

Looking for the suitable candidate for transferring:
Let P be the point we were trying to add on the face F and C be
the total set of candidates for transferring gathered after adding P.
For each element of C, calculate the coordinates of the result of its
transfer onto F and the distance of the result from P.
Choose the candidate the result of which gets nearest to P while
obeying the following requirements: 1) it is strictly inside the cir-
cumcircle of the triangle for the refining of which we were adding
P; 2) it does not violate the radii of the corners of F; 3) it is strictly
inside F.
If none of the candidates obey all of these rules, do not select any.

In this algorithm, we initially subdivide the domain edges until 1) they all
become connected, and 2) all triangles near edges in 2-D triangulations of
the domain faces have acute angles opposite the edge. This guarantees that

Robust Construction of 3-D Conforming Delaunay Meshes 193

any point added on a face at the circumcenter of a 2-D Delaunay triangle
will be strictly inside this face.
The refinement of faces is performed by adding points at the circumcenters
of those triangles that are not present in the tetrahedralization, or the adja-
cent tets of which are not sufficiently acute. If the added point is close to a
corner or an edge of the face, we may, instead of adding this point, refine
the fan of the corner, or transfer a point around the edge from an already
recovered face. We add points on faces one by one; before adding each
point we ensure that all triangles near the border of the face are acute.
Currently, the algorithm tries to arrange the points so that the first layer of
a face’s vertices near an edge is identical for all faces sharing this edge.
The transferring of points around the edge, and the setting of fan vertices
at fixed angles from the edge, both serve this purpose.
After the boundary is recovered, the program marks the tets outside the
domain by passing over them with an advancing front, starting from do-
main boundary. This allows to check easily whether a point with given co-
ordinates belongs to the domain’s interior: simply locate the tet to which it
belongs (using the spatial tree) and see if it is an interior one. It is possible
to perform addition of points at the circumcenters of the interior tets. Be-
cause Voronoï cells of the boundary points contain the entire boundary, we
may be sure that all of the interior tets have their circumcenters strictly in-
side the domain.

4 Numerical Precision

4.1 Numerical Precision and Robustness

The presented algorithm is very sensitive to numerical precision errors in
several places: the main point-in-tet-circumsphere check, distance checks
when updating corner radii, point-inside-polygon check, etc. For the code
to be robust, these checks must be implemented so as to give the correct
result in the maximum number of cases, desirably for all acceptable inputs.
There exist methods for performing such checks robustly and efficiently
when the input is integer or machine-precision floating-point [9][11][12].
Unfortunately, in my algorithm, the points added during the conformation
stage may require more precision than a floating-point variable may con-
tain, and may even be irrational. For example, the computation of a trian-
gle’s circumcenter coordinates involves division, and may, therefore, result
in an infinite binary fraction. Some vertices that are introduced during the
conformation process may have such coordinates, and the geometry

194 Konstantin Bogomolov

checks, ideally, should be able to cope with them. Even worse, rotating a
point around an edge, or putting a point on a line at a fixed distance from a
given point, may introduce square roots, and, therefore, irrational coordi-
nates for the geometric predicates to handle.
I do not see any simple way to construct a robust conforming Delaunay al-
gorithm that avoids placing points with such bad coordinates. At least, no
limited-precision arithmetic seems to be sufficient as an easy solution to
this problem. Such a limited-precision arithmetic (no matter fixed- or float-
ing-point) will constrain the input points onto some grid. It is always pos-
sible to imagine a face or an edge the vertices of which belong to this grid,
but none of the interior points do. If this face or edge needs to be recov-
ered, it will not be possible to place a point exactly on it.
If we use a limited-precision arithmetic, the point will be placed a little
away from the plane of the face. In this case, there is a possibility that a
Delaunay tet will be constructed with one triangle on the face and the 4th

vertex at the new point (for example, if the face is on external boundary
and the point a little way inside the domain; in this case, even though the
tet will have big circumradius, the circumscribing sphere may be almost
entirely outside the domain, where there may be no points to block it).

Fig. 9. PLC similar to hard case in [1] Fig. 10. Delaunay mesh

Fig. 11. Voronoï cells Fig. 12. Voronoï cells, another view

Robust Construction of 3-D Conforming Delaunay Meshes 195

It is, perhaps, possible to handle such situations, for example, with some
sliver removal technique; however, that would complicate things as the
sliver removal might interfere with the conformation. Most importantly,
placing the new points not exactly where they should go would make the
code non-robust (on extreme inputs) by design. It would be difficult to
track whether a given anomaly during the execution of the program was
caused by a fault in the algorithm, an implementation bug or by the round-
ing of coordinates.
Because of all these difficulties with limited-precision arithmetic, I have
implemented the presented algorithm using arbitrary-precision arithmetic.
I believe the benefits of this approach to be these:
1. It allows to empirically verify the unproven algorithm. The arithmetic

library may serve as a test base for experimenting with new strategies in
meshing or other fields.

2. The code is almost totally robust by design (almost, because there re-
mains one adjustable parameter for choosing speed or robustness in one
extreme case).

3. The library may also be useful in other applications where a high level
of robustness is sought for; it would probably help to save much work
(compared to algorithm-specific modification) to achieve the required
level of robustness. Also, the library may help reduce constraints on the
input data (e.g., no limit on how different the size of the domain and the
size of small features are), and possibly reduce the number of tweakable
“epsilon” parameters.

A method for robust computation of staged geometric predicates has been
recently presented by Shewchuk [11] and Nanevski, Blelloch and Harper
[12]. Unlike the approach presented here, this method makes use of the
hardware-supported floating-point numbers, by exploiting the properties of
their roundoff errors. This allows to achieve a significantly better speed of
computation than with the approach presented here; however, the follow-
ing presents justifications for developing my method.
First, the staged geometric predicates operate on points with floating-point
coordinates. This means that the expression the sign of which is evaluated
by the predicate is fixed: the predicate is either hand-coded or generated
from a given expression by a compiler. My approach, however, allows the
coordinates of input points to be expressions themselves; it puts no limit
on the level of nesting of operations. The expression the sign of which is
being determined can be constructed during the execution of the program.
Second, the staged geometric predicates that operate with floating-point
variables require that the exceptional conditions of overflow and under-
flow do not occur during the computation [12]. If they do occur, it is sug-

196 Konstantin Bogomolov

gested that the computation should be rerun in another, slower form of ex-
act arithmetic. The presented library should be suitable exactly for that!

4.2 The Automatic Arbitrary-Precision Arithmetic Library

The following notes describe the implemented arbitrary-precision strategy
for avoiding numerical error problems.
1. Use arbitrary-precision arithmetic for all computations.
2. Keep all results that can be reused (e.g., vertex coordinates) in memory,

in the form of a graph of expressions. Each expression in this graph is
linked to its arguments, which may be other expressions or constants.
Each expression also stores its value in the numerical form, exactly or
with some precision.

3. Make the arithmetic library able to resume computations, increasing the
precision of any expression starting from the previously reached preci-
sion.

4. Make the library automatically choose the precision needed for the in-
termediate results, in order to get the requested precision for the final re-
sult.

The strategy has been implemented in the Automatic Arbitrary-Precision
Arithmetic Library. It can compute, in accordance with the formulated
rules, arbitrary expressions containing the 4 arithmetic operations, square
roots, and finite-bit-length constants.
The input vertices of the mesh may be usual floating-point constants. They
are converted and stored as the Library’s finite-bit-length constants. The
coordinates of vertices added during the conformation are expressions that
depend on these input constants, and, possibly, on some previously con-
structed expressions. Many different expressions may point to the same
expression as an argument, and, if the value of this argument expression
has been computed to some precision, all of the depending expressions
will be able to use it. The entire graph of expressions for vertex coordi-
nates remains in memory while the mesh is being constructed. This is nec-
essary since the addition of new vertices may require to increase the preci-
sion of already existing vertices. The expressions for performing geometry
checks, such as the point-in-circumsphere check, are usually not reused,
and, therefore, exist in memory only for the duration of the check. This
applies only to the “top” part of the expression graph for a given check,
e.g. to the multiplications and additions that comprise the determinant (1).
The argument expressions (vertex coordinates) are those stored in the
main, permanent, graph.

Robust Construction of 3-D Conforming Delaunay Meshes 197

To perform a geometric check, the sign of some expression needs to be
evaluated, for example, the sign of the determinant (1) for the point-in-
circumsphere check. The program constructs the graph for this determinant
and calls the Refine function for the top expression in the graph. The Re-
fine function increases the precision of an expression by the given amount
of bits. It first determines what precision the arguments must have in order
to achieve the requested precision in the result. If the arguments are not
constant, and their current precision is not sufficient, Refine is called for
them, recursively, in order to achieve the required precision.
So, in order to know the sign of the determinant, we call Refine for its ex-
pression, repeatedly, increasing its precision by some amount of bits each
time, until it becomes sufficient, i.e., until we get to a non-zero bit.
A special case is when the determinant is zero, and, because of divisions or
roots, its numerical evaluation results in an infinite sequence of zero bits.
In this case, we cannot reliably determine whether it is really zero, or just a
very small positive or negative number, the leading “1” bit of which we
have not yet reached. Currently, when the program reaches the 300th bit af-
ter the decimal point without encountering any 1s, it accepts the number as
zero; this is the only situation when the program’s logic is not fully robust.
This constant (-300) can be changed if necessary. It may also be possible
to implement an analytical transformation of any expression showing such
behavior that eliminates all divisions and roots and checks if it is in fact
zero. My current implementation of this operation, however, has complex-
ity proportional to 2q, where q is the number of roots in the expression, and
was disabled for performance reasons.
The Library is implemented with C++ classes. The basic class, CPre-
cise, stores a number (as an arbitrary-length array of bits). The finite-bit-
length constants are stored as objects of this class. Expressions are imple-
mented as classes inherited from CPrecise. In addition to the bit array
(that can be expanded, if necessary, to accommodate the increasing preci-
sion), they store the pointers to their arguments, as well as the information
about current precision. This precision information has the form of integer
w such that

lcur lex lcur + 2w, (2)

where lcur is the approximate absolute value currently stored in the bit ar-
ray, and lex is absolute value of the exact number this expression repre-
sents. I call this w value the error bit.
When Refine function is called, for example, for an addition object, it
checks the error bits of the arguments to see what precision we can reach
with the current state of the arguments. E.g., if we are adding two positive

198 Konstantin Bogomolov

numbers, one having error bit w1, and another w2, we might truncate both
arguments to the bit wmax = max(w1, w2), add them, and set the error bit of
the result to wmax + 2, which can be shown to be sufficient for the result to
conform to the inequality (2). From this, we can determine how much the
arguments should be refined for the result to have the precision requested
by the caller. Similar considerations are used with all other operations. The
logic is contained in the Refine functions for all operations and is com-
pletely transparent to the user. The user only specifies by how many bits
the end result should be refined; the Library refines all intermediate values
as necessary, choosing their precision automatically.
The Library also handles a special case of numbers that are so close to zero
that their signs are not yet known. For such an “around zero” number, the
error bit is specified so that the number is inside the [-2w, 2w] segment. Re-
fine functions for all operations perform special handling if any of the ar-
guments is an “around zero” number. When evaluating the sign of deter-
minant, we actually call the Refine function repeatedly until the
determinant’s expression becomes a regular, non-“around zero” number.
The implementation of all 5 operations and the handling of all special
cases resulted in a quite big and complex code. The Library has built-in
self-verification (for debug builds only), that, when turned on, verifies all
results and error bounds with simple bitwise checks. At the time of writing
there are no known bugs; however, the Library should not be used in any
application the reliability of which has critical effect in the real world.

4.3 Performance and Memory Use

If only a fixed-precision (or the common floating-point) arithmetic was
used, each vertex of the mesh would store its coordinates in a few bytes,
e.g. 8 per coordinate. With the Library, the coordinates of vertices are the
nodes in the expression graph, which also contains all of the intermediate
values. Each vertex, however, adds only a fixed number of expressions to
the graph (exactly how many, depends on what kind of vertex it is: one
added at a circumcenter, or on an edge, or on a circle around corner, etc.).
Therefore, the number of nodes in the graph grows linearly with the num-
ber of points added during the conformation.
Each node, however, stores an arbitrary-length array of bits. In order to
understand how the presented approach will scale with increasing problem
size, we need to consider the impact of this increase on the precision with
which the intermediate results shall have to be computed. It is very impor-
tant that this precision does not grow too fast, as the algorithms for arbi-
trary-precision arithmetic may have bad asymptotic properties in relation

Robust Construction of 3-D Conforming Delaunay Meshes 199

to requested precision (e.g. O(N2) for the current implementation of multi-
plication).
When the sign of an expression needs to be determined, this expression is
refined until either its leading “1” bit, or the 300th bit after the decimal
point, is reached. This means that we’ll need to perform only a fixed
amount of work for the top expression in the graph. The total amount of
work, however, will depend on how many bits will need to be computed in
the intermediate expressions.
For addition and subtraction, in order to refine the result down to a given
bit, each of the arguments must be refined down to that bit and by 2 bits
more. For multiplication, the arguments must each have the number of sig-
nificant bits roughly equal to the required amount of significant bits in the
result. For the reciprocal (1/x), the argument must have, roughly, the same
amount of significant bits as the result. The argument of the square root
must have about 2 times more significant bits than the result.
This means that the amount of bits needed to be calculated for intermediate
expressions may grow with the increasing depth of dependence in the
graph. However, the fastest, really prohibitive, growth happens only with
square roots; luckily, the algorithm does not require any nesting of square
roots (they appear only in unit edge vectors and normals of the input PLC,
and when putting point at an angle with a power of 2 sine).
Note that in the algorithm pseudocode it is said that a point is sometimes
added approximately in the middle of an edge or an arc. This is done in or-
der to reduce the nested dependence between points. Suppose, for exam-
ple, that an edge of the PLC has the points a and b at the ends, and the
points p1 and p2 already added on it. Suppose also that we need to subdi-
vide the edge further by adding a point between p1 and p2. If we put it ex-
actly at midpoint, i.e. at 0.5 (p1 + p2), we will introduce a dependence of
the new point on p1 and p2 (that, in their own turn, probably depend al-
ready on the edge ends a and b). If the point can be placed not precisely in
the middle between p1 and p2, we can compute its coordinates as
a + t (b - a) with some finite-precision constant t, and thus avoid one level
of dependence. Similar considerations are used when subdividing protect-
ing arcs around PLC vertices (instead of making the new point dependent
on its neighbors on the arc, we add the point at an angle with finite-
precision sine or cosine from edge).
The level of dependence for other operations can grow with increasing
problem size. This happens in 2 cases: (a) the circumcenter of a triangle
depends on its 3 corner vertices; (b) a vertex transferred from another face
by rotation around edge depends on the original vertex. It seems that the
growth in the level of nesting of operations shouldn’t be too fast in prac-

200 Konstantin Bogomolov

tice. Note that, if the level of nesting of circumcenters is increased by 1,
the amount of points that can be placed on the face is, roughly, tripled.
Also, perhaps, the (a) dependence can be totally avoided by placing points
not exactly at the circumcenters (but exactly on the face!), making them
dependent only on the PLC corners. The (b) dependence, it seems, cannot
be completely avoided, but it is unlikely to be common that a vertex jumps
consecutively around many different edges.
These considerations show that the presented approach is likely to scale
well with increasing problem size in practice. That, however, has not been
verified, as the current implementation suffers from an extremely ineffi-
cient (O(N2)-like) search for unconformed triangles and edges (avoiding it
poses no theoretical problems, but has not yet been implemented).

References

1. Jonathan Richard Shewchuk (2002) Constrained Delaunay Tetrahedraliza-
tions and Provably Good Boundary Recovery. In: Proceedings of the 11th
International Meshing Roundtable 193-204

2. Michael Murphy, David M. Mount, Carl W. Gable (2000) A Point-
Placement Strategy for Conforming Delaunay Tetrahedralization. In: Pro-
ceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algo-
rithms 67-74

3. David Cohen-Steiner, Éric Colin de Verdière, Mariette Yvinec (2002) Con-
forming Delaunay Triangulations in 3D. In: Proceedings of the 18th ACM
Symposium on Computational Geometry 199-208

4. Siu-Wing Cheng, Sheung-Hung Poon (2003) Graded Conforming Delau-
nay Tetrahedralization with Bounded Radius-Edge Ratio. In: Proceedings
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms 295-
304

5. Steven E. Pav, Noel J. Walkington (2004) Robust Three Dimensional De-
launay Refinement. In: Proceedings of the 13th International Meshing
Roundtable

6. Siu-Wing Cheng, Tamal K. Dey, Edgar A. Ramos, Tathagata Ray (2004)
Quality Meshing for Polyhedra with Small Angles. In: Proceedings of the
20th Annual ACM Symposium on Computational Geometry 290-299

7. Timothy J. Baker (1999) Delaunay-Voronoï Methods. In: Joe F. Thomp-
son, Bharat K. Soni, Nigel P. Weatherill (eds) Handbook of Grid Genera-
tion 16. CRC Press, Boca Raton London New York Washington, D.C.

8 Jim Ruppert (1995) A Delaunay Refinement Algorithm for Quality 2-
Dimensional Mesh Generation. In: J. Algorithms 18,3:548-585

9 Jonathan Richard Shewchuk (1997) Delaunay Refinement Mesh Genera-
tion. PhD Thesis, Carnegie Mellon University

Robust Construction of 3-D Conforming Delaunay Meshes 201

10 Steven Elliot Pav (2003) Delaunay Refinement Algorithms. PhD Thesis,
Carnegie Mellon University

11 Jonathan Richard Shewchuk (1996) Robust Adaptive Floating-Point Geo-
metric Predicates. In: Proceedings of the 12th Annual Symposium on Com-
putational Geometry

12 Aleksandar Nanevski, Guy Blelloch, Robert Harper (2003) Automatic
Generation of Staged Geometric Predicates. In: Higher-Order and Sym-
bolic Computation, vol. 16, issue 4, 379-400

